Journal of Organometallic Chemistry, 369 (1989) C21-C22 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands JOM 9977PC

Preliminary communication

The preparation of a series of ring-linked derivatives of $[Fe_2(\eta-C_5H_5)_2(CO)_2(\mu-CO)_2]$ starting from $[Fe_2\{\eta^5,\eta^5-C_5H_4CH(NMe_3)CH(NMe_2)C_5H_4\}(CO)_2(\mu-CO)_2]^+$ salts

M. Gary Cox, Paul Soye and A.R. Manning *

Department of Chemistry, University College, Dublin 4 (Ireland) (Received March 20th, 1989)

Abstract

The salts $[Fe_2\{\eta^5,\eta^5-C_5H_4CH\{NMe_3)CH(NMe_2)C_5H_4\}(CO)_2(\mu-CO)_2][X]$ (X = I or SO_3CF_3) are the synthetic precursors to a wide range of $[Fe_2(\eta-C_5H_5)_2(CO)_2(\mu-CO)_2]$ derivatives in which the two cyclopentadienyl ligands are joined by a two-carbon bridge.

[Fe₂{ η^5, η^5 -C₅H₄CH(NMe₃)CH(NMe₂)C₅H₄}(CO)₂(μ -CO)₂][X] salts are readily prepared by the methylation of either R,S or R,R/S,S isomers of [Fe₂{ η^5,η^5 -C₅H₄CH(NMe₂)CH(NMe₂)C₅H₄}(CO)₂(μ -CO)₂] [1].

Treatment of a solution of these salts in acetonitrile with a slight excess of [PhCH₂NMe₃]OH (Triton-B) in methanol or water gives an almost quantitative yield of the enamine [Fe₂{ η^5 , η^5 -C₅H₄C(H)C(NMe₂)C₅H₄}(CO)₂(μ -CO)₂] (dec. 260 °C), contaminated with traces of [Fe₂{ η^5 , η^5 -C₅H₄CH(NMe₂)CH(NMe₂)C₅-H₄}(CO)₂(μ -CO)₂].

Although [Fe₂{ η^5 , η^5 -C₅H₄C(H)C(NMe₂)C₅H₄}(CO)₂(μ -CO)₂] could be purified by recrystallization, attempts to do this by chromatography on alumina resulted in its acid-catalysed hydrolysis to [Fe₂{ η^5 , η^5 -C₅H₄CH₂C(O)C₅H₄}(CO)₂(μ -CO)₂] (m.p. 213–215 °C). This undergoes many of the usual reactions of a ketone [2]; e.g. [NH₃OH]Cl converts it into an oxime [Fe₂{ η^5 , η^5 -C₅H₄CH₂C(NOH)C₅H₄}(CO)₂-(μ -CO)₂] (m.p. 237–239 °C), and it is reduced by LiAlH₄ to a secondary alcohol, [Fe₂{ η^5 , η^5 -C₅H₄CH₂CH(OH)C₅H₄}(CO)₂(μ -CO)₂] (m.p. 188–191 °C).

LiAlH₄ reduces the salts [Fe₂{ η^5 , η^5 -C₅H₄CH(NMe₃)CH(NMe₂)C₅H₄}(CO)₂(μ -CO)₂][X] (X = I or SO₃CF₃) quantitatively to [Fe₂{ η^5 , η^5 -C₅H₄CH₂CH-(NMe₂)C₅H₄}(CO)₂(μ -CO)₂] (dec. 245°C). This in turn may be methylated by MeOSO₂CF₃ to give [Fe₂{ η^5 , η^5 -C₅H₄CH₂CH(NMe₃)C₅H₄}(CO)₂-(μ -CO)₂][SO₃CF₃] (dec. 202°C).

Analytically pure samples of all products were isolated, and characterised by IR and NMR spectroscopy. The Fe₂(η -dienyl)₂(CO)₂(μ -CO)₂ part of the molecule is

unchanged by the above reactions; e.g. for $[Fe_2\{\eta^5,\eta^5-C_5H_4CH_2C(O)C_5H_4\}-(CO)_2(\mu-CO)_2]$ $\nu(CO)$ (carbon disulphide solution; relative peak heights in parentheses): 2005(10), 1968(2), 1819(0.4), 1792(6.5), 1688(1.5; ketone) cm⁻¹.

References

- 1 A.R. Manning, A. McCabe, and P. Soye. in preparation.
- 2 H.T. Openshaw, A Laboratory Manual of Qualitative Organic Analysis, 2nd edition, Cambridge University Press, London, England, 1951.